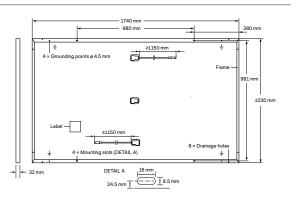
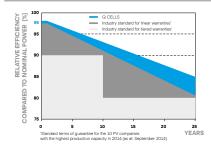


THE IDEAL SOLUTION FOR:



Rooftop arrays on residential buildings

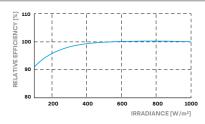
Rooftop arrays on commercial/industrial buildings



ELECTRICAL CHARACTERISTICS

PO	VER CLASS			340	345	350	355
MIN	IIMUM PERFORMANCE AT STANDA	RD TEST CONDITIO	NS, STC1 (PO\	WER TOLERANCE +5 W /	-0W)		
	Power at MPP¹	P _{MPP}	[W]	340	345	350	355
_	Short Circuit Current ¹	I _{sc}	[A]	10.68	10.73	10.79	10.84
mun	Open Circuit Voltage ¹	V _{oc}	[V]	40.24	40.49	40.73	40.98
Mini	Current at MPP	I _{MPP}	[A]	10.16	10.22	10.27	10.33
_	Voltage at MPP	V_{MPP}	[V]	33.45	33.76	34.07	34.38
	Efficiency ¹	η	[%]	≥19.0	≥19.3	≥19.5	≥19.8
MIN	IIMUM PERFORMANCE AT NORMAL	OPERATING CONE	DITIONS, NMC)T ²			
	Power at MPP	P _{MPP}	[W]	254.5	258.2	261.9	265.7
E	Short Circuit Current	I _{sc}	[A]	8.60	8.65	8.69	8.74
nj.	Open Circuit Voltage	V _{oc}	[V]	37.94	38.17	38.41	38.65
⋈	Current at MPP	I _{MPP}	[A]	8.00	8.04	8.09	8.13
	Voltage at MPP	V _{MPP}	[V]	31.81	32.10	32.40	32.69

 $^{1}\text{Measurement tolerances P}_{\text{MPP}} \pm 3\%; I_{\text{SC}}; V_{\text{OC}} \pm 5\% \text{ at STC} : 1000\text{W/m}^{2}, 25 \pm 2^{\circ}\text{C}, \text{AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{NMOT}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{800W/m}^{2}, \text{spectrum AM 1.5G according to IEC 60904-3} \\ \cdot ^{2}\text{$


Q CELLS PERFORMANCE WARRANTY

At least 98 % of nominal power during first year. Thereafter max. 0.54 % degradation per year. At least 93.1% of nominal power up to 10 years. At least 85% of nominal power up to 25 years.

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Q CELLS sales organisation of your respective country.

PERFORMANCE AT LOW IRRADIANCE

Typical module performance under low irradiance conditions in comparison to STC conditions (25 °C, 1000 W/m²).

TEMPERATURE COEFFICIENTS							
Temperature Coefficient of I _{SC}	α	[%/K]	+0.04	Temperature Coefficient of Voc	β	[%/K]	-0.27
Temperature Coefficient of P _{MPP}	γ	[%/K]	-0.36	Normal Module Operating Temperature	NMOT	[°C]	43±3

PROPERTIES FOR SYSTEM DESIGN

Maximum System Voltage	V_{SYS}	[V]	1000	Safety Class	II
Maximum Reverse Current	I_R	[A]	20	Fire Rating	С
Max. Design Load, Push / Pull		[Pa]	3600/2667	Permitted Module Temperature	-40°C - +85°C
Max. Test Load, Push / Pull		[Pa]	5400/4000	on Continuous Duty	

QUALIFICATIONS AND CERTIFICATES

PACKAGING INFORMATION

VDE Quality Tested, IEC 61215:2016; IEC 61730:2016, Application Class II; This data sheet complies with DIN EN 50380.

Number of Modules per Pallet	32
Number of Pallets per Trailer (24t)	28
Number of Pallets per 40' HC-Container (26t)	24
Pallet Dimensions (L × W × H)	1815 × 1150 × 1190 mm
Pallet Weight	683kg

Note: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use of this product.

Hanwha Q CELLS GmbH

 $Sonnenallee 17-21, 06766 \ Bitterfeld-Wolfen, Germany \ | \ \textbf{TEL} + 49 \ (0)3494 \ 66 \ 99-23444 \ | \ \textbf{FAX} + 49 \ (0)3494 \ 66 \ 99-23000 \ | \ \textbf{EMAIL} \ sales@q-cells.com \ | \ \textbf{WEB} \ www.q-cells.com \ | \ \textbf{WeB} \ ww.q-cells.com \ | \ \textbf{WeB} \ www.q-cells.com \ | \ \textbf{WeB} \ ww.q-cells.com \ | \ \textbf{WeB$

